Copy Number Alterations in Glioma Cell Lines
نویسندگان
چکیده
Established tumor-derived cell lines are widely and routinely used as in vitro cancer models for various kinds of biomedical research. The easy management of these cell cultures, in contrast to the inherent difficulty in establishing and mantaining primary tumoral cultures, has contributed to the wide use of these inmortalized cell lines in order to characterize the biological significance of specific genomic aberrations identified in primary tumors. Therefore, it has been assumed that the genomic and expression aberrations of long-term established cell lines resemble, and are representative, of the primary tumor from which the cell line was derived. Indeed, the cell line-based research has been performed, not only for the definition of the molecular biology of several cancer models, but also for the investigation of new targeted therapeutic agents in a prior step to clinical practice. The use of tumor-derived cell lines has been highly relevant for the testing and development of new therapeutical agents, with several cancer cell-line panels having been developed for drug sensitivity screening and new agents’ discovery (Sharma et al, 2010). Controversial concerning the ability of tumor-derived cell lines to accurately reflect the phenotype and genotype of the parental histology has been documented. A previous report of Greshock and coworkers using array-based Comparative Genomic Hybridization (aCGH) data of seven diagnosis-specific matched tumors and cell lines showed that, on average, cell lines preserve in vitro the genetic aberrations that are unique to the parent histology from which they were derived, while acquiring additional locus-specific alterations in long-term cultures (Greshock et al, 2007). In contrast, a study on breast cancer cell lines and primary tumors highlight that cell lines do not always represent the genotypes of parental tumor tissues (Tsuji et al, 2010). Furthermore, a parallel genomic and expression study on glioma cell lines and primary tumors states that in this specific cancer type, cell lines are poor representative of the primary tumors (Li et al, 2008). Given the importance of the use of cell lines as models for the study of the biology and development of tumors, and for the testing of the mode of action of new therapeutical agents, the knowledge of which genomic alterations are tumor-specific or which are necessary for the maintenance of the cell line in culture, becomes essential.
منابع مشابه
Correlation of HER2, MDM2, c-MYC, c-MET, and TP53 Copy Number Alterations in Circulating Tumor Cells with Tissue in Gastric Cancer Patients: A Pilot Study
Background: The analysis of the gene copy number alterations in tumor samples are increasingly used for diagnostic and prognostic purposes in patients with gastric cancer (GC). However, these procedures are not always applicable due to their invasive nature. In this study, we have analyzed the copy number alterations of five genes (HER2, MDM2, c-MYC, c-MET, and TP53) with a fixed relevance for ...
متن کاملEvaluation of HER2, MDM2, MYC, MET and TP53 gene copy number alterations in gastric cancer patients
Background: Gastric cancer (GC) is considered as one of the most common types of cancer worldwide with poor prognosis and generally limited treatment options. Recent studies have indicated that HER2, MDM2, MYC, MET, and TP53 play an important role in the development of gastric cancer. Therefore, the aim of this study was to evaluate the incidence of amplification/deletion of these genes in pati...
متن کاملTypes of glioma brain tumors and genetic alterations in signaling pathways in them
Types of glioma brain tumors and genetic alterations in signaling pathways in them Background & Objective: Glioma is a common type of primary brain tumor originating in the glial cells that surrounds and supports neurons in the brain. These tumors arise from three different types of cells that are normally found in the brain: astrocytes, oligodendrocytes, and ependymal cells, accordingly types ...
متن کاملDelineating the Cytogenomic and Epigenomic Landscapes of Glioma Stem Cell Lines
Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term "multiforme" describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the...
متن کاملA survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival.
With the advent of high-throughput sequencing technologies, much progress has been made in the identification of somatic structural rearrangements in cancer genomes. However, characterization of the complex alterations and their associated mechanisms remains inadequate. Here, we report a comprehensive analysis of whole-genome sequencing and DNA copy number data sets from The Cancer Genome Atlas...
متن کاملComparing the genomes of cutaneous melanoma tumors to commercially available cell lines
Insulated culture environment and prolonged propagation contribute to known limitations of cell lines, and selection is often limited to availability or favorable growth characteristics. To better characterize and improve selection of cell lines, we compared 60 melanoma cell lines profiled by the Cancer Cell Line Encyclopedia and 472 cutaneous melanoma tumors profiled by The Cancer Genome Atlas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012